Fast information-theoretic Bayesian optimisation B Ru, MA Osborne, M McLeod, D Granziol International Conference on Machine Learning, 4384-4392, 2018 | 50 | 2018 |
Entropic trace estimates for log determinants J Fitzsimons, D Granziol, K Cutajar, M Osborne, M Filippone, S Roberts Machine Learning and Knowledge Discovery in Databases: European Conference …, 2017 | 24 | 2017 |
Learning rates as a function of batch size: A random matrix theory approach to neural network training D Granziol, S Zohren, S Roberts The Journal of Machine Learning Research 23 (1), 7795-7859, 2022 | 18* | 2022 |
Beyond random matrix theory for deep networks D Granziol arXiv preprint arXiv:2006.07721, 2020 | 16 | 2020 |
Towards understanding the true loss surface of deep neural networks using random matrix theory and iterative spectral methods D Granziol, T Garipov, D Vetrov, S Zohren, S Roberts, AG Wilson | 16 | 2019 |
MEMe: An accurate maximum entropy method for efficient approximations in large-scale machine learning D Granziol, B Ru, S Zohren, X Dong, M Osborne, S Roberts Entropy 21 (6), 551, 2019 | 16 | 2019 |
Appearance of random matrix theory in deep learning NP Baskerville, D Granziol, JP Keating Physica A: Statistical Mechanics and its Applications 590, 126742, 2022 | 10 | 2022 |
MLRG deep curvature D Granziol, X Wan, T Garipov, D Vetrov, S Roberts arXiv preprint arXiv:1912.09656, 2019 | 10 | 2019 |
Flatness is a false friend D Granziol arXiv preprint arXiv:2006.09091, 2020 | 7 | 2020 |
Iterative averaging in the quest for best test error D Granziol, X Wan, S Albanie, S Roberts arXiv preprint arXiv:2003.01247, 2020 | 5 | 2020 |
Iterate averaging helps: An alternative perspective in deep learning D Granziol, X Wan, S Roberts stat 1050, 2, 2020 | 5 | 2020 |
Deep curvature suite D Granziol, X Wan, T Garipov arXiv preprint arXiv:1912.09656, 2019 | 5 | 2019 |
Ranker-agnostic Contextual Position Bias Estimation OB Mayor, V Bellini, A Buchholz, G Di Benedetto, DM Granziol, M Ruffini, ... arXiv preprint arXiv:2107.13327, 2021 | 3 | 2021 |
Gadam: Combining Adaptivity with Iterate Averaging Gives Greater Generalisation D Granziol, X Wan, S Roberts stat 1050, 10, 2020 | 3 | 2020 |
Explaining the Adaptive Generalisation Gap D Granziol, X Wan, S Albanie, S Roberts arXiv preprint arXiv:2011.08181, 2020 | 3 | 2020 |
VBALD-Variational Bayesian approximation of log determinants D Granziol, E Wagstaff, BX Ru, M Osborne, S Roberts arXiv preprint arXiv:1802.08054, 2018 | 3 | 2018 |
Universal characteristics of deep neural network loss surfaces from random matrix theory NP Baskerville, JP Keating, F Mezzadri, J Najnudel, D Granziol Journal of Physics A: Mathematical and Theoretical 55 (49), 494002, 2022 | 2 | 2022 |
A random matrix theory approach to damping in deep learning D Granziol, N Baskerville Journal of Physics: Complexity 3 (2), 024001, 2022 | 2 | 2022 |
Applicability of Random Matrix Theory in Deep Learning NP Baskerville, D Granziol, JP Keating arXiv e-prints, arXiv: 2102.06740, 2021 | 2 | 2021 |
The Deep Learning Limit: are negative neural network eigenvalues just noise? D Granziol, T Garipov, S Zohren, D Vetrov, S Roberts, AG Wilson ICML 2019 workshop on theoretical physics for deep learning, 2019 | 2 | 2019 |