Quantum field theory and Hopf algebra cohomology C Brouder, B Fauser, A Frabetti, R Oeckl Journal of Physics A: Mathematical and General 37 (22), 5895, 2004 | 71 | 2004 |

On the Hopf algebraic origin of Wick normal ordering B Fauser Journal of Physics A: Mathematical and General 34 (1), 105, 2001 | 56 | 2001 |

New branching rules induced by plethysm B Fauser, PD Jarvis, RC King, BG Wybourne Journal of Physics A: Mathematical and General 39 (11), 2611, 2006 | 44 | 2006 |

On the decomposition of Clifford algebras of arbitrary bilinear form B Fauser, R Abłamowicz Clifford Algebras and their Applications in Mathematical Physics, 341-366, 2000 | 40* | 2000 |

Mathematics of clifford-a maple package for clifford and graßmann algebras R Ablamowicz, B Fauser Advances in Applied Clifford Algebras 15 (2), 157-181, 2005 | 36 | 2005 |

A Hopf laboratory for symmetric functions B Fauser, PD Jarvis Journal of Physics A: Mathematical and General 37 (5), 1633, 2004 | 36 | 2004 |

On an easy transition from operator dynamics to generating functionals by Clifford algebras B Fauser Journal of Mathematical Physics 39 (9), 4928-4947, 1998 | 36 | 1998 |

Clifford: a maple 11 package for clifford algebra computations, version 11 R Ablamowicz, B Fauser Retrieved February 28, 2008, 2007 | 35 | 2007 |

A treatise on quantum Clifford algebras B Fauser arXiv preprint math/0202059, 2002 | 35 | 2002 |

Clifford geometric parameterization of inequivalent vacua B Fauser Mathematical Methods in the Applied Sciences 24 (12), 885-912, 2001 | 30 | 2001 |

Algebra and Physics R Ablamowicz Birkhäuser, 2000 | 29* | 2000 |

On the transposition anti-involution in real Clifford algebras I: the transposition map R Abłamowicz, B Fauser Linear and Multilinear Algebra 59 (12), 1331-1358, 2011 | 28 | 2011 |

On the transposition anti-involution in real Clifford algebras II: stabilizer groups of primitive idempotents R Abłamowicz, B Fauser Linear and Multilinear Algebra 59 (12), 1359-1381, 2011 | 23 | 2011 |

Plethysms, replicated Schur functions and series, with applications to vertex operators B Fauser, PD Jarvis, RC King Journal of Physics A: Mathematical and Theoretical 43 (40), 405202, 2010 | 22 | 2010 |

Quantum gravity: mathematical models and experimental bounds B Fauser, J Tolksdorf, E Zeidler Springer Science & Business Media, 2007 | 22 | 2007 |

Positronium as an example of algebraic composite calculations B Fauser, H Stumpf arXiv preprint hep-th/9510193, 1995 | 22 | 1995 |

Clifford Algebraic Remark on the Mandelbrot Set of Two--Component Number Systems B Fauser arXiv preprint hep-th/9507133, 1995 | 22 | 1995 |

On the transposition anti-involution in real Clifford algebras III: the automorphism group of the transposition scalar product on spinor spaces R Abłamowicz, B Fauser Linear and Multilinear algebra 60 (6), 621-644, 2012 | 20 | 2012 |

Quantum gravity—a short overview C Kiefer Quantum gravity, 1-13, 2006 | 20 | 2006 |

Vertex normal ordering as a consequence of nonsymmetric bilinear forms in Clifford algebras B Fauser Journal of Mathematical Physics 37 (1), 72-83, 1996 | 20 | 1996 |