A survey of preference-based reinforcement learning methods C Wirth, R Akrour, G Neumann, J Fürnkranz Journal of Machine Learning Research 18 (136), 1-46, 2017 | 416 | 2017 |
April: Active preference learning-based reinforcement learning R Akrour, M Schoenauer, M Sebag Machine Learning and Knowledge Discovery in Databases: European Conference …, 2012 | 205 | 2012 |
Preference-based policy learning R Akrour, M Schoenauer, M Sebag Machine Learning and Knowledge Discovery in Databases: European Conference …, 2011 | 199 | 2011 |
Programming by feedback R Akrour, M Schoenauer, M Sebag, JC Souplet International Conference on Machine Learning 32, 1503-1511, 2014 | 83* | 2014 |
Model-free trajectory optimization for reinforcement learning R Akrour, G Neumann, H Abdulsamad, A Abdolmaleki International Conference on Machine Learning, 2961-2970, 2016 | 52 | 2016 |
Model-free trajectory-based policy optimization with monotonic improvement R Akrour, A Abdolmaleki, H Abdulsamad, J Peters, G Neumann Journal of machine learning research 19 (14), 1-25, 2018 | 31 | 2018 |
Reinforcement learning based underwater wireless optical communication alignment for autonomous underwater vehicles Y Weng, J Pajarinen, R Akrour, T Matsuda, J Peters, T Maki IEEE Journal of Oceanic Engineering 47 (4), 1231-1245, 2022 | 27 | 2022 |
Compatible natural gradient policy search J Pajarinen, HL Thai, R Akrour, J Peters, G Neumann Machine Learning 108, 1443-1466, 2019 | 27 | 2019 |
Sample and feedback efficient hierarchical reinforcement learning from human preferences R Pinsler, R Akrour, T Osa, J Peters, G Neumann 2018 IEEE international conference on robotics and automation (ICRA), 596-601, 2018 | 27 | 2018 |
Regularizing reinforcement learning with state abstraction R Akrour, F Veiga, J Peters, G Neumann 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2018 | 25 | 2018 |
Local Bayesian optimization of motor skills R Akrour, D Sorokin, J Peters, G Neumann International Conference on Machine Learning, 41-50, 2017 | 25 | 2017 |
Continuous action reinforcement learning from a mixture of interpretable experts R Akrour, D Tateo, J Peters | 23* | 2020 |
Layered direct policy search for learning hierarchical skills F End, R Akrour, J Peters, G Neumann 2017 IEEE International Conference on Robotics and Automation (ICRA), 6442-6448, 2017 | 21 | 2017 |
Hierarchical tactile-based control decomposition of dexterous in-hand manipulation tasks F Veiga, R Akrour, J Peters Frontiers in Robotics and AI 7, 521448, 2020 | 18 | 2020 |
Projections for approximate policy iteration algorithms R Akrour, J Pajarinen, J Peters, G Neumann International Conference on Machine Learning, 181-190, 2019 | 16 | 2019 |
Interactive robot education R Akrour, M Schoenauer, M Sebag ECML/PKDD Workshop on Reinforcement Learning with Generalized Feedback …, 2013 | 15 | 2013 |
Interpretable and Editable Programmatic Tree Policies for Reinforcement Learning H Kohler, Q Delfosse, R Akrour, K Kersting, P Preux arXiv preprint arXiv:2405.14956, 2024 | 7 | 2024 |
Towards reinforcement learning of human readable policies R Akrour, D Tateo, J Peters The European Conference on Machine Learning and Principles and Practice of …, 2019 | 6 | 2019 |
An upper bound of the bias of Nadaraya-Watson kernel regression under Lipschitz assumptions S Tosatto, R Akrour, J Peters Stats 4 (1), 1-17, 2020 | 5 | 2020 |
Learning replanning policies with direct policy search F Brandherm, J Peters, G Neumann, R Akrour IEEE Robotics and Automation Letters 4 (2), 2196-2203, 2019 | 5 | 2019 |