A conservative level set method for two phase flow E Olsson, G Kreiss Journal of computational physics 210 (1), 225-246, 2005 | 1307 | 2005 |

A conservative level set method for two phase flow II E Olsson, G Kreiss, S Zahedi Journal of Computational Physics 225 (1), 785-807, 2007 | 586 | 2007 |

Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability D Appelö, T Hagstrom, G Kreiss SIAM Journal on Applied Mathematics 67 (1), 1-23, 2006 | 163 | 2006 |

A new absorbing layer for elastic waves D Appelö, G Kreiss Journal of Computational Physics 215 (2), 642-660, 2006 | 124 | 2006 |

Bounds for threshold amplitudes in subcritical shear flows G Kreiss, A Lundbladh, DS Henningson Journal of Fluid Mechanics 270, 175-198, 1994 | 113 | 1994 |

Convergence to steady state of solutions of Burgers' equation G Kreiss, HO Kreiss Applied Numerical Mathematics 2 (3-5), 161-179, 1986 | 105 | 1986 |

Spurious currents in finite element based level set methods for two‐phase flow S Zahedi, M Kronbichler, G Kreiss International Journal for Numerical Methods in Fluids 69 (9), 1433-1456, 2012 | 65 | 2012 |

A conservative level set method for contact line dynamics S Zahedi, K Gustavsson, G Kreiss Journal of Computational Physics 228 (17), 6361-6375, 2009 | 62 | 2009 |

A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation K Duru, G Kreiss Communications in Computational Physics 11 (5), 1643-1672, 2012 | 57 | 2012 |

Stability of systems of viscous conservation laws G Kreiss, HO Kreiss Communications on pure and applied mathematics 51 (11‐12), 1397-1424, 1998 | 54 | 1998 |

Application of a perfectly matched layer to the nonlinear wave equation D Appelö, G Kreiss Wave Motion 44 (7-8), 531-548, 2007 | 52 | 2007 |

A uniformly well-conditioned, unfitted Nitsche method for interface problems E Wadbro, S Zahedi, G Kreiss, M Berggren BIT Numerical Mathematics 53 (3), 791-820, 2013 | 48 | 2013 |

High order finite difference methods for the wave equation with non-conforming grid interfaces S Wang, K Virta, G Kreiss Journal of Scientific Computing 68 (3), 1002-1028, 2016 | 46 | 2016 |

Convergence of summation-by-parts finite difference methods for the wave equation S Wang, G Kreiss Journal of Scientific Computing 71 (1), 219-245, 2017 | 41 | 2017 |

On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems G Kreiss, HO Kreiss, NA Petersson SIAM journal on numerical analysis 31 (6), 1577-1604, 1994 | 34 | 1994 |

An optimized perfectly matched layer for the Schrödinger equation A Nissen, G Kreiss Communications in Computational Physics 9 (1), 147-179, 2011 | 33 | 2011 |

High order stable finite difference methods for the Schrödinger equation A Nissen, G Kreiss, M Gerritsen Journal of Scientific Computing 55 (1), 173-199, 2013 | 30 | 2013 |

A stabilized Nitsche cut element method for the wave equation S Sticko, G Kreiss Computer methods in applied mechanics and engineering 309, 364-387, 2016 | 29 | 2016 |

A perfectly matched layer applied to a reactive scattering problem A Nissen, HO Karlsson, G Kreiss The Journal of chemical physics 133 (5), 054306, 2010 | 25 | 2010 |

Stable and high-order accurate boundary treatments for the elastic wave equation on second-order form K Duru, G Kreiss, K Mattsson SIAM Journal on Scientific Computing 36 (6), A2787-A2818, 2014 | 24 | 2014 |