Discovering the compositional structure of vector representations with role learning networks P Soulos, T McCoy, T Linzen, P Smolensky arXiv preprint arXiv:1910.09113, 2019 | 28 | 2019 |
Learning hierarchical visual representations in deep neural networks using hierarchical linguistic labels JC Peterson, P Soulos, A Nematzadeh, TL Griffiths arXiv preprint arXiv:1805.07647, 2018 | 17 | 2018 |
Context-aware system for providing fitness information P Soulos, A Gale US Patent App. 14/812,379, 2017 | 9 | 2017 |
Enriching transformers with structured tensor-product representations for abstractive summarization Y Jiang, A Celikyilmaz, P Smolensky, P Soulos, S Rao, H Palangi, ... arXiv preprint arXiv:2106.01317, 2021 | 6 | 2021 |
Disentangled face representations in deep generative models and the human brain P Soulos, L Isik NeurIPS 2020 Workshop SVRHM, 2020 | 2 | 2020 |
Structural Biases for Improving Transformers on Translation into Morphologically Rich Languages P Soulos, S Rao, C Smith, E Rosen, A Celikyilmaz, RT McCoy, Y Jiang, ... arXiv preprint arXiv:2208.06061, 2022 | 1 | 2022 |
Disentangled deep generative models reveal coding principles of the human face processing network P Soulos, L Isik bioRxiv, 2023.02. 15.528489, 2023 | | 2023 |