On the number of Latin squares BD McKay, IM Wanless Annals of combinatorics 9 (3), 335-344, 2005 | 236 | 2005 |

Transversals in Latin squares: a survey IM Wanless Surveys in combinatorics 392, 403-437, 2011 | 103 | 2011 |

The number of transversals in a Latin square BD McKay, JC McLeod, IM Wanless Designs, Codes and Cryptography 40 (3), 269-284, 2006 | 89 | 2006 |

A census of small Latin hypercubes BD McKay, IM Wanless SIAM Journal on Discrete Mathematics 22 (2), 719-736, 2008 | 83 | 2008 |

Enumeration of MOLS of small order J Egan, IM Wanless Mathematics of Computation 85 (298), 799-824, 2016 | 67 | 2016 |

The existence of Latin squares without orthogonal mates IM Wanless, BS Webb Designs, Codes and Cryptography 40, 131-135, 2006 | 66 | 2006 |

A generalisation of transversals for Latin squares IM Wanless the electronic journal of combinatorics, R12-R12, 2002 | 61 | 2002 |

Diagonally cyclic Latin squares IM Wanless European Journal of Combinatorics 25 (3), 393-413, 2004 | 58 | 2004 |

Covering radius for sets of permutations PJ Cameron, IM Wanless Discrete mathematics 293 (1-3), 91-109, 2005 | 55 | 2005 |

Acyclic digraphs and eigenvalues of (0, 1)-matrices BD McKay, FE Oggier, GF Royle, NJA Sloane, IM Wanless, HS Wilf arXiv preprint math/0310423, 2003 | 54 | 2003 |

Most Latin squares have many subsquares BD McKay, IM Wanless Journal of Combinatorial Theory, Series A 86 (2), 323-347, 1999 | 54 | 1999 |

An update on Minc’s survey of open problems involving permanents GS Cheon, IM Wanless Linear algebra and its applications 403, 314-342, 2005 | 52 | 2005 |

Transversals in Latin squares I Wanless Quasigroups and related systems 15 (1), 169-190, 2007 | 51 | 2007 |

Cycle switches in Latin squares IM Wanless Graphs and Combinatorics 20 (4), 545-570, 2004 | 50 | 2004 |

Cycle structure of autotopisms of quasigroups and Latin squares DS Stones, P Vojtěchovský, IM Wanless Journal of Combinatorial Designs 20 (5), 227-263, 2012 | 49 | 2012 |

Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles IM Wanless the electronic journal of combinatorics, R9-R9, 1999 | 49 | 1999 |

Latin squares CJ Colbourn, JH Dinitz, IM Wanless Handbook of combinatorial designs, 161-177, 2006 | 46 | 2006 |

Atomic Latin squares based on cyclotomic orthomorphisms IM Wanless the electronic journal of combinatorics, R22-R22, 2005 | 41 | 2005 |

Symmetries that Latin squares inherit from 1‐factorizations IM Wanless, EC Ihrig Journal of Combinatorial Designs 13 (3), 157-172, 2005 | 37 | 2005 |

Permutation polynomials and orthomorphism polynomials of degree six CJ Shallue, IM Wanless Finite Fields and Their Applications 20, 84-92, 2013 | 35 | 2013 |