Follow
Jana-Rebecca Rehse
Jana-Rebecca Rehse
Junior Professor, University of Mannheim
Verified email at uni-mannheim.de
Title
Cited by
Cited by
Year
Predicting process behaviour using deep learning
J Evermann, JR Rehse, P Fettke
Decision Support Systems 100, 129-140, 2017
4372017
A deep learning approach for predicting process behaviour at runtime
J Evermann, JR Rehse, P Fettke
Business Process Management Workshops: BPM 2016 International Workshops, Rio …, 2017
1502017
AI-augmented business process management systems: a research manifesto
M Dumas, F Fournier, L Limonad, A Marrella, M Montali, JR Rehse, ...
ACM Transactions on Management Information Systems 14 (1), 1-19, 2023
962023
Towards explainable process predictions for industry 4.0 in the dfki-smart-lego-factory
JR Rehse, N Mehdiyev, P Fettke
KI-Künstliche Intelligenz 33, 181-187, 2019
942019
A generic framework for trace clustering in process mining
F Zandkarimi, JR Rehse, P Soudmand, H Hoehle
2020 2nd International Conference on Process Mining (ICPM), 177-184, 2020
482020
Large language models can accomplish business process management tasks
M Grohs, L Abb, N Elsayed, JR Rehse
International Conference on Business Process Management, 453-465, 2023
392023
A graph-theoretic method for the inductive development of reference process models
JR Rehse, P Fettke, P Loos
Software & Systems Modeling 16 (3), 833-873, 2017
352017
Business process management for Industry 4.0–Three application cases in the DFKI-Smart-Lego-Factory
JR Rehse, S Dadashnia, P Fettke
IT-Information Technology 60 (3), 133-141, 2018
292018
Clustering business process activities for identifying reference model components
JR Rehse, P Fettke
Business Process Management Workshops: BPM 2018 International Workshops …, 2019
282019
A reference data model for process-related user interaction logs
L Abb, JR Rehse
International Conference on Business Process Management, 57-74, 2022
272022
Uncovering object-centric data in classical event logs for the automated transformation from XES to OCEL
A Rebmann, JR Rehse, H van der Aa
International Conference on Business Process Management, 379-396, 2022
262022
XES tensorflow-Process prediction using the tensorflow deep-learning framework
J Evermann, JR Rehse, P Fettke
arXiv preprint arXiv:1705.01507, 2017
202017
Team communication processing and process analytics for supporting robot-assisted emergency response
C Willms, C Houy, JR Rehse, P Fettke, I Kruijff-Korbayová
2019 IEEE International Symposium on Safety, Security, and Rescue Robotics …, 2019
192019
Eine Untersuchung der Potentiale automatisierter Abstraktionsansätze für Geschäftsprozessmodelle im Hinblick auf die induktive Entwicklung von Referenzprozessmodellen
JR Rehse, P Fettke, P Loos
142013
Process mining meets visual analytics: the case of conformance checking
JR Rehse, L Pufahl, M Grohs, LM Klein
arXiv preprint arXiv:2209.09712, 2022
132022
Trace Clustering for User Behavior Mining.
L Abb, C Bormann, H van der Aa, JR Rehse
ECIS, 2022
132022
Inductive reference model development: recent results and current challenges
JR Rehse, P Hake, P Fettke, P Loos
Informatik 2016, 739-752, 2016
122016
Process discovery from event stream data in the cloud-A scalable, distributed implementation of the flexible heuristics miner on the Amazon kinesis cloud infrastructure
J Evermann, JR Rehse, P Fettke
2016 IEEE International Conference on Cloud Computing Technology and Science …, 2016
102016
SAP Signavio Academic Models: a large process model dataset
D Sola, C Warmuth, B Schäfer, P Badakhshan, JR Rehse, T Kampik
International Conference on Process Mining, 453-465, 2022
92022
Process mining and the black swan: an empirical analysis of the influence of unobserved behavior on the quality of mined process models
JR Rehse, P Fettke, P Loos
Business Process Management Workshops: BPM 2017 International Workshops …, 2018
92018
The system can't perform the operation now. Try again later.
Articles 1–20