Follow
Céline Brouard
Céline Brouard
INRAE, MIA Toulouse, France
Verified email at inra.fr - Homepage
Title
Cited by
Cited by
Year
Critical assessment of small molecule identification 2016: automated methods
EL Schymanski, C Ruttkies, M Krauss, C Brouard, T Kind, K Dührkop, ...
Journal of cheminformatics 9, 1-21, 2017
2002017
Fast metabolite identification with input output kernel regression
C Brouard, H Shen, K Dührkop, F d'Alché-Buc, S Böcker, J Rousu
Bioinformatics 32 (12), i28-i36, 2016
1092016
Semi-supervised penalized output kernel regression for link prediction
C Brouard, F d'Alché-Buc, M Szafranski
Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011
982011
Liquid-chromatography retention order prediction for metabolite identification
E Bach, S Szedmak, C Brouard, S Böcker, J Rousu
Bioinformatics 34 (17), i875-i883, 2018
732018
Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels
C Brouard, M Szafranski, F d'Alché-Buc
Journal of Machine Learning Research 17 (176), 1-48, 2016
732016
Learning to predict graphs with fused gromov-wasserstein barycenters
L Brogat-Motte, R Flamary, C Brouard, J Rousu, F d’Alché-Buc
International Conference on Machine Learning, 2321-2335, 2022
312022
Magnitude-preserving ranking for structured outputs
C Brouard, E Bach, S Böcker, J Rousu
Asian Conference on Machine Learning, 407-422, 2017
232017
Learning a Markov Logic network for supervised gene regulatory network inference
C Brouard, C Vrain, J Dubois, D Castel, MA Debily, F d’Alché-Buc
BMC bioinformatics 14, 1-14, 2013
202013
Improved small molecule identification through learning combinations of kernel regression models
C Brouard, A Bassé, F d’Alché-Buc, J Rousu
Metabolites 9 (8), 160, 2019
192019
Pushing data into CP models using graphical model learning and solving
C Brouard, S de Givry, T Schiex
Principles and Practice of Constraint Programming: 26th International …, 2020
142020
Machine learning of protein interactions in fungal secretory pathways
J Kludas, M Arvas, S Castillo, T Pakula, M Oja, C Brouard, J Jäntti, ...
PloS one 11 (7), e0159302, 2016
122016
Vector-valued least-squares regression under output regularity assumptions
L Brogat-Motte, A Rudi, C Brouard, J Rousu, F d'Alché-Buc
Journal of Machine Learning Research 23 (344), 1-50, 2022
102022
Feature selection for kernel methods in systems biology
C Brouard, J Mariette, R Flamary, N Vialaneix
NAR genomics and bioinformatics 4 (1), lqac014, 2022
92022
Inférence de réseaux d'interaction protéine-protéine par apprentissage statistique
C Brouard
Université d'Evry-Val d'Essonne, 2013
92013
Should we really use graph neural networks for transcriptomic prediction?
C Brouard, R Mourad, N Vialaneix
Briefings in bioinformatics 25 (2), bbae027, 2024
42024
Soft kernel target alignment for two-stage multiple kernel learning
H Shen, S Szedmak, C Brouard, J Rousu
Discovery Science: 19th International Conference, DS 2016, Bari, Italy …, 2016
42016
Critical assessment of small molecule identification 2016: automated methods. J Cheminform. 2017; 9 (1): 22
EL Schymanski, C Ruttkies, M Krauss, C Brouard, T Kind, K Dührkop
4
Learning output embeddings in structured prediction
L Brogat-Motte, A Rudi, C Brouard, J Rousu, F d'Alché-Buc
arXiv preprint arXiv:2007.14703, 2020
32020
RNA expression dataset of 384 sunflower hybrids in field condition
C Penouilh-Suzette, L Pomiès, H Duruflé, N Blanchet, F Bonnafous, ...
OCL 27, 36, 2020
32020
Regularized output kernel regression applied to protein-protein interaction network inference
C Brouard, M Szafranski, F d’Alché-Buc
NIPS MLCB Workshop, 2010
32010
The system can't perform the operation now. Try again later.
Articles 1–20