Follow
Jasper Snoek
Jasper Snoek
Google Brain
Verified email at google.com
Title
Cited by
Cited by
Year
Practical bayesian optimization of machine learning algorithms
J Snoek, H Larochelle, RP Adams
Advances in Neural Information Processing Systems, 2012
69312012
Scalable bayesian optimization using deep neural networks
J Snoek, O Rippel, K Swersky, R Kiros, N Satish, N Sundaram, M Patwary, ...
International conference on machine learning, 2015
8962015
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ...
Advances in Neural Information Processing Systems, 2019
8762019
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
DR Kelley, J Snoek, JL Rinn
Genome research 26 (7), 990-999, 2016
7802016
Multi-task bayesian optimization
K Swersky, J Snoek, RP Adams
Advances in Neural Information Processing Systems, 2013
6552013
Bayesian optimization with unknown constraints
MA Gelbart, J Snoek, RP Adams
Uncertainty in Artificial Intelligence, 2014
3952014
Likelihood ratios for out-of-distribution detection
J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, MA DePristo, JV Dillon, ...
Advances in Neural Information Processing Systems, 2019
3802019
Towards an empirical foundation for assessing bayesian optimization of hyperparameters
K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ...
NIPS workshop on Bayesian Optimization in Theory and Practice 10 (3), 2013
3552013
Spectral representations for convolutional neural networks
O Rippel, J Snoek, RP Adams
Advances in Neural Information Processing Systems, 2015
2882015
Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling
C Riquelme, G Tucker, J Snoek
International Conference on Learning Representations, 2018
2722018
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
DR Kelley, YA Reshef, M Bileschi, D Belanger, CY McLean, J Snoek
Genome research 28 (5), 739-750, 2018
2472018
Freeze-thaw Bayesian optimization
K Swersky, J Snoek, RP Adams
arXiv preprint arXiv:1406.3896, 2014
2342014
Input warping for Bayesian optimization of non-stationary functions
J Snoek, K Swersky, R Zemel, R Adams
International Conference on Machine Learning, 1674-1682, 2014
2202014
How good is the bayes posterior in deep neural networks really?
F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ...
International Conference on Machine Learning, 2020
1812020
Learning latent permutations with gumbel-sinkhorn networks
G Mena, D Belanger, S Linderman, J Snoek
International Conference on Learning Representations, 2018
1542018
Winner's curse? On pace, progress, and empirical rigor
D Sculley, J Snoek, A Wiltschko, A Rahimi
International Conference on Learning Representations Workshops, 2018
152*2018
Efficient and scalable bayesian neural nets with rank-1 factors
M Dusenberry, G Jerfel, Y Wen, Y Ma, J Snoek, K Heller, ...
International conference on machine learning, 2782-2792, 2020
1192020
Hyperparameter ensembles for robustness and uncertainty quantification
F Wenzel, J Snoek, D Tran, R Jenatton
Advances in Neural Information Processing Systems, 2020
962020
Machine learning approaches in cardiovascular imaging
M Henglin, G Stein, PV Hushcha, J Snoek, AB Wiltschko, S Cheng
Circulation: Cardiovascular Imaging 10 (10), e005614, 2017
942017
Training independent subnetworks for robust prediction
M Havasi, R Jenatton, S Fort, JZ Liu, J Snoek, B Lakshminarayanan, ...
International Conference on Learning Representations, 2021
862021
The system can't perform the operation now. Try again later.
Articles 1–20