关注
Ming Jin
标题
引用次数
引用次数
年份
Graph Self-Supervised Learning: A Survey
Y Liu, M Jin, S Pan, C Zhou, F Xia, PS Yu
IEEE Transactions on Knowledge and Data Engineering, 2022
4012022
Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning
M Jin, Y Zheng, YF Li, C Gong, C Zhou, S Pan
International Joint Conference on Artificial Intelligence (IJCAI), 2021
1222021
Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
Y Zheng, M Jin, Y Liu, L Chi, KT Phan, YPP Chen
IEEE Transactions on Knowledge and Data Engineering, 2021
702021
ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning
M Jin, Y Liu, Y Zheng, L Chi, YF Li, S Pan
Proceedings of the 30th ACM International Conference on Information …, 2021
612021
Time-LLM: Time Series Forecasting by Reprogramming Large Language Models
M Jin, S Wang, L Ma, Z Chu, JY Zhang, X Shi, PY Chen, Y Liang, YF Li, ...
International Conference on Learning Representations (ICLR), 2024
582024
A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
M Jin, HY Koh, Q Wen, D Zambon, C Alippi, GI Webb, I King, S Pan
arXiv preprint arXiv:2307.03759, 2023
512023
Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs
M Jin, Y Zheng, YF Li, S Chen, B Yang, S Pan
IEEE Transactions on Knowledge and Data Engineering, 2022
512022
Neural Temporal Walks: Motif-Aware Representation Learning on Continuous-Time Dynamic Graphs
M Jin, YF Li, S Pan
Advances in Neural Information Processing Systems (NeurIPS), 2022
452022
Self-supervised learning for time series analysis: Taxonomy, progress, and prospects
K Zhang, Q Wen, C Zhang, R Cai, M Jin, Y Liu, J Zhang, Y Liang, G Pang, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023
322023
Large models for time series and spatio-temporal data: A survey and outlook
M Jin, Q Wen, Y Liang, C Zhang, S Xue, X Wang, J Zhang, Y Wang, ...
arXiv preprint arXiv:2310.10196, 2023
282023
Optimized Coefficient Vector and Sparse Representation-Based Classification Method for Face Recognition
S Liu, L Li, M Jin, S Hou, Y Peng
IEEE Access, 2019
162019
Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming
Y Zheng, M Jin, S Pan, YF Li, H Peng, M Li, Z Li
IEEE Transactions on Neural Networks and Learning Systems, 2021
152021
From unsupervised to few-shot graph anomaly detection: A multi-scale contrastive learning approach
Y Zheng, M Jin, Y Liu, L Chi, KT Phan, S Pan, YPP Chen
arXiv preprint arXiv:2202.05525, 2022
102022
Correlation-aware Spatial-Temporal Graph Learning for Multivariate Time-series Anomaly Detection
Y Zheng, HY Koh, M Jin, L Chi, KT Phan, S Pan, YPP Chen, W Xiang
IEEE Transactions on Neural Networks and Learning Systems, 2023
82023
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
S Xue, F Zhou, Y Xu, M Jin, Q Wen, H Hao, Q Dai, C Jiang, H Zhao, S Xie, ...
arXiv preprint arXiv:2308.05361, 2023
62023
Searching Correlated Patterns From Graph Streams
M Jin, M Li, Y Zheng, L Chi
IEEE Access, 2020
52020
A Clickthrough Rate Prediction Algorithm Based on Users’ Behaviors
X Xiong, C Xie, R Zhao, Y Li, S Ju, M Jin
IEEE Access, 2019
52019
Geometric relational embeddings: A survey
B Xiong, M Nayyeri, M Jin, Y He, M Cochez, S Pan, S Staab
arXiv preprint arXiv:2304.11949, 2023
42023
What Can Large Language Models Tell Us about Time Series Analysis
M Jin, Y Zhang, W Chen, K Zhang, Y Liang, B Yang, J Wang, S Pan, ...
arXiv preprint arXiv:2402.02713, 2024
32024
How Expressive are Spectral-Temporal Graph Neural Networks for Time Series Forecasting?
M Jin, G Shi, YF Li, Q Wen, B Xiong, T Zhou, S Pan
arXiv preprint arXiv:2305.06587, 2023
32023
系统目前无法执行此操作,请稍后再试。
文章 1–20