Evaluating the search phase of neural architecture search K Yu, C Sciuto, M Jaggi, C Musat, M Salzmann International Conference on Learning Representations, 2020 | 407* | 2020 |
Bevfusion: A simple and robust lidar-camera fusion framework T Liang, H Xie, K Yu, Z Xia, Z Lin, Y Wang, T Tang, B Wang, Z Tang Advances in Neural Information Processing Systems 35, 10421-10434, 2022 | 300 | 2022 |
Recurrent U-Net for resource-constrained segmentation W Wang, K Yu, J Hugonot, P Fua, M Salzmann Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 120 | 2019 |
Knowledge distillation via the target-aware transformer S Lin, H Xie, B Wang, K Yu, X Chang, X Liang, G Wang Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 107 | 2022 |
Second-order convolutional neural networks K Yu, M Salzmann arXiv preprint arXiv:1703.06817, 2017 | 69 | 2017 |
Statistically-motivated second-order pooling K Yu, M Salzmann Proceedings of the European Conference on Computer Vision (ECCV), 600-616, 2018 | 57 | 2018 |
Nas-bench-suite: Nas evaluation is (now) surprisingly easy Y Mehta, C White, A Zela, A Krishnakumar, G Zabergja, S Moradian, ... arXiv preprint arXiv:2201.13396, 2022 | 51 | 2022 |
Bevheight: A robust framework for vision-based roadside 3d object detection L Yang, K Yu, T Tang, J Li, K Yuan, L Wang, X Zhang, P Chen Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 50 | 2023 |
Benchmarking the robustness of lidar-camera fusion for 3d object detection K Yu, T Tao, H Xie, Z Lin, T Liang, B Wang, P Chen, D Hao, Y Wang, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 46 | 2023 |
Pyramid architecture search for real-time image deblurring X Hu, W Ren, K Yu, K Zhang, X Cao, W Liu, B Menze Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 43 | 2021 |
Generalized class incremental learning F Mi, L Kong, T Lin, K Yu, B Faltings Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 42 | 2020 |
Overcoming multi-model forgetting Y Benyahia, K Yu, KB Smires, M Jaggi, AC Davison, M Salzmann, ... International Conference on Machine Learning, 594-603, 2019 | 40 | 2019 |
How to train your super-net: An analysis of training heuristics in weight-sharing nas K Yu, R Ranftl, M Salzmann arXiv preprint arXiv:2003.04276, 2020 | 31 | 2020 |
Fusionad: Multi-modality fusion for prediction and planning tasks of autonomous driving T Ye, W Jing, C Hu, S Huang, L Gao, F Li, J Wang, K Guo, W Xiao, W Mao, ... arXiv preprint arXiv:2308.01006, 2023 | 25 | 2023 |
Bevcontrol: Accurately controlling street-view elements with multi-perspective consistency via bev sketch layout K Yang, E Ma, J Peng, Q Guo, D Lin, K Yu arXiv preprint arXiv:2308.01661, 2023 | 23 | 2023 |
Towards large-scale 3d representation learning with multi-dataset point prompt training X Wu, Z Tian, X Wen, B Peng, X Liu, K Yu, H Zhao Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 21 | 2024 |
Landmark regularization: Ranking guided super-net training in neural architecture search K Yu, R Ranftl, M Salzmann Proceedings of the IEEE/CVF Conference on computer vision and pattern …, 2021 | 21 | 2021 |
Bevheight++: Toward robust visual centric 3d object detection L Yang, T Tang, J Li, P Chen, K Yuan, L Wang, Y Huang, X Zhang, K Yu arXiv preprint arXiv:2309.16179, 2023 | 20 | 2023 |
LiDAR-NeRF: Novel lidar view synthesis via neural radiance fields T Tao, L Gao, G Wang, Y Lao, P Chen, H Zhao, D Hao, X Liang, ... arXiv preprint arXiv:2304.10406, 2023 | 18 | 2023 |
An analysis of super-net heuristics in weight-sharing nas K Yu, R Ranftl, M Salzmann IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11), 8110 …, 2021 | 9 | 2021 |