Chris Brown
Chris Brown
Senior Lecturer, University of Otago
Verified email at otago.ac.nz - Homepage
Title
Cited by
Cited by
Year
The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli.
ES Poole, CM Brown, WP Tate
The EMBO journal 14 (1), 151-158, 1995
3051995
Translational termination efficiency in mammals is influenced by the base following the stop codon
KK McCaughan, CM Brown, ME Dalphin, MJ Berry, WP Tate
Proceedings of the National Academy of Sciences 92 (12), 5431-5435, 1995
2721995
Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs
O Rackham, CM Brown
The EMBO journal 23 (16), 3346-3355, 2004
2072004
Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes
CM Brown, PA Stockwell, CNA Trotman, WP Tate
Nucleic acids research 18 (21), 6339-6345, 1990
1821990
Effect of 5'UTR introns on gene expression in Arabidopsis thaliana
BYW Chung, C Simons, AE Firth, CM Brown, RP Hellens
BMC genomics 7 (1), 120, 2006
1742006
CRISPRTarget: bioinformatic prediction and analysis of crRNA targets
A Biswas, JN Gagnon, SJJ Brouns, PC Fineran, CM Brown
RNA biology 10 (5), 817-827, 2013
1682013
Translational termination:" stop" for protein synthesis or" pause" for regulation of gene expression
WP Tate, CM Brown
Biochemistry 31 (9), 2443-2450, 1992
1501992
The signal for the termination of protein synthesis in procaryotes
CM Brown, PA Stockwell, CNA Trotman, WP Tate
Nucleic acids research 18 (8), 2079-2086, 1990
1381990
Global or local? Predicting secondary structure and accessibility in mRNAs
SJ Lange, D Maticzka, M Möhl, JN Gagnon, CM Brown, R Backofen
Nucleic acids research 40 (12), 5215-5226, 2012
1162012
Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon.
CM Brown, SP Dinesh-Kumar, WA Miller
Journal of virology 70 (9), 5884-5892, 1996
1071996
CRISPRDetect: a flexible algorithm to define CRISPR arrays
A Biswas, RHJ Staals, SE Morales, PC Fineran, CM Brown
BMC genomics 17 (1), 356, 2016
982016
Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system
RHJ Staals, SA Jackson, A Biswas, SJJ Brouns, CM Brown, PC Fineran
Nature communications 7 (1), 1-13, 2016
882016
Detecting overlapping coding sequences in virus genomes
AE Firth, CM Brown
BMC bioinformatics 7 (1), 75, 2006
852006
The translational termination signal database
CM Brown, ME Dalphin, PA Stockwell, WP Tate
Nucleic acids research 21 (13), 3119-3123, 1993
841993
Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon
WP Tate, ES Poole, JA Horsfield, SA Mannering, CM Brown, JG Moffat, ...
Biochemistry and cell biology 73 (11-12), 1095-1103, 1995
791995
Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two.
CM Brown, WP Tate
Journal of Biological Chemistry 269 (52), 33164-33170, 1994
771994
Transterm: a database to aid the analysis of regulatory sequences in mRNAs
GH Jacobs, A Chen, SG Stevens, PA Stockwell, MA Black, WP Tate, ...
Nucleic acids research 37 (suppl 1), D72-D76, 2009
722009
New punctuation for the genetic code: luteovirus gene expression
WA Miller, CM Brown, S Wang
Seminars in Virology 8 (1), 3-13, 1997
631997
Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination
CM Brown, KK McCaughan, WP Tate
Nucleic acids research 21 (9), 2109-2115, 1993
541993
Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons
A Chen, YF Kao, CM Brown
Nucleic acids research 33 (4), 1169-1181, 2005
532005
The system can't perform the operation now. Try again later.
Articles 1–20