Machine-learned identification of RR Lyrae stars from sparse, multi-band data: the PS1 sample B Sesar, N Hernitschek, S Mitrović, Ž Ivezić, HW Rix, JG Cohen, ... The Astronomical Journal 153 (5), 204, 2017 | 148 | 2017 |
Combining temporal aspects of dynamic networks with Node2Vec for a more efficient dynamic link prediction S De Winter, T Decuypere, S Mitrović, B Baesens, J De Weerdt 2018 IEEE/ACM international conference on advances in social networks …, 2018 | 44 | 2018 |
On the operational efficiency of different feature types for telco Churn prediction S Mitrović, B Baesens, W Lemahieu, J De Weerdt European Journal of Operational Research 267 (3), 1141-1155, 2018 | 35 | 2018 |
tcc2vec: RFM-informed representation learning on call graphs for churn prediction S Mitrović, B Baesens, W Lemahieu, J De Weerdt Information Sciences 557, 270-285, 2021 | 26 | 2021 |
Angrybert: Joint learning target and emotion for hate speech detection MR Awal, R Cao, RKW Lee, S Mitrović Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia …, 2021 | 24 | 2021 |
Chatgpt or human? detect and explain. explaining decisions of machine learning model for detecting short chatgpt-generated text S Mitrović, D Andreoletti, O Ayoub arXiv preprint arXiv:2301.13852, 2023 | 17 | 2023 |
On analyzing antisocial behaviors amid covid-19 pandemic MR Awal, R Cao, S Mitrovic, RKW Lee arXiv preprint arXiv:2007.10712, 2020 | 17 | 2020 |
Representation learning in graphs for credit card fraud detection R Van Belle, S Mitrović, J De Weerdt Mining Data for Financial Applications: 4th ECML PKDD Workshop, MIDAS 2019 …, 2020 | 13 | 2020 |
Scalable RFM-enriched representation learning for churn prediction S Mitrovic, G Singh, B Baesens, W Lemahieu, J De Weerdt 2017 IEEE International Conference on Data Science and Advanced Analytics …, 2017 | 13 | 2017 |
SST-BERT at SemEval-2020 Task 1: Semantic shift tracing by clustering in BERT-based embedding spaces V Kanjirangat, S Mitrovic, A Antonucci, F Rinaldi Proceedings of the Fourteenth Workshop on Semantic Evaluation, 214-221, 2020 | 11* | 2020 |
On analyzing annotation consistency in online abusive behavior datasets MR Awal, R Cao, RKW Lee, S Mitrović arXiv preprint arXiv:2006.13507, 2020 | 10 | 2020 |
Churn prediction using dynamic rfm-augmented node2vec S Mitrović, B Baesens, W Lemahieu, J De Weerdt Personal Analytics and Privacy. An Individual and Collective Perspective …, 2017 | 9 | 2017 |
Churn modeling with probabilistic meta paths-based representation learning S Mitrović, J De Weerdt Information Processing & Management 57 (2), 102052, 2020 | 8 | 2020 |
Summarizing citation contexts of scientific publications S Mitrović, H Müller Experimental IR Meets Multilinguality, Multimodality, and Interaction: 6th …, 2015 | 7 | 2015 |
A comparative study of community detection techniques for large evolving graphs L Coppens, J De Venter, S Mitrović, J De Weerdt Machine Learning and Knowledge Discovery in Databases: International …, 2020 | 5 | 2020 |
Dyn2Vec: Exploiting dynamic behaviour using difference networks-based node embeddings for classification S Mitrovic, J De Weerdt | 5 | 2018 |
Implementation of Quantum Machine Learning Algorithms: A Literature Review M Šćekić, S Šćepanović, S Mitrović 2022 11th Mediterranean Conference on Embedded Computing (MECO), 1-4, 2022 | 3 | 2022 |
Predicting branch visits and credit card up-selling using temporal banking data S Mitrović, G Singh arXiv preprint arXiv:1607.06123, 2016 | 3 | 2016 |
A comparative study of representation learning techniques for dynamic networks C Ortega Vázquez, S Mitrović, J De Weerdt, S vanden Broucke Trends and Innovations in Information Systems and Technologies: Volume 3 8 …, 2020 | 2 | 2020 |
Neural Machine Translation for Conditional Generation of Novel Procedures J Geluykens, S Mitrović, CE Ortega Vázquez, T Laino, A Vaucher, ... | 1 | 2021 |