Rich feature hierarchies for accurate object detection and semantic segmentation R Girshick, J Donahue, T Darrell, J Malik Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 39049 | 2014 |
Caffe: Convolutional architecture for fast feature embedding Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick, ... Proceedings of the 22nd ACM international conference on Multimedia, 675-678, 2014 | 18505 | 2014 |
Long-term recurrent convolutional networks for visual recognition and description J Donahue, L Anne Hendricks, S Guadarrama, M Rohrbach, ... Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 7840 | 2015 |
Context encoders: Feature learning by inpainting D Pathak, P Krahenbuhl, J Donahue, T Darrell, AA Efros Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 6587 | 2016 |
Decaf: A deep convolutional activation feature for generic visual recognition J Donahue, Y Jia, O Vinyals, J Hoffman, N Zhang, E Tzeng, T Darrell International conference on machine learning, 647-655, 2014 | 6082 | 2014 |
Large scale GAN training for high fidelity natural image synthesis A Brock, J Donahue, K Simonyan arXiv preprint arXiv:1809.11096, 2018 | 6024 | 2018 |
Region-based convolutional networks for accurate object detection and segmentation R Girshick, J Donahue, T Darrell, J Malik IEEE transactions on pattern analysis and machine intelligence 38 (1), 142-158, 2015 | 3334 | 2015 |
Flamingo: a visual language model for few-shot learning JB Alayrac, J Donahue, P Luc, A Miech, I Barr, Y Hasson, K Lenc, ... Advances in neural information processing systems 35, 23716-23736, 2022 | 2786 | 2022 |
Adversarial feature learning J Donahue, P Krähenbühl, T Darrell arXiv preprint arXiv:1605.09782, 2016 | 2503 | 2016 |
Sequence to sequence-video to text S Venugopalan, M Rohrbach, J Donahue, R Mooney, T Darrell, K Saenko Proceedings of the IEEE international conference on computer vision, 4534-4542, 2015 | 1783 | 2015 |
Part-based R-CNNs for fine-grained category detection N Zhang, J Donahue, R Girshick, T Darrell Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014 | 1519 | 2014 |
Translating videos to natural language using deep recurrent neural networks S Venugopalan, H Xu, J Donahue, M Rohrbach, R Mooney, K Saenko arXiv preprint arXiv:1412.4729, 2014 | 1224 | 2014 |
Population based training of neural networks M Jaderberg, V Dalibard, S Osindero, WM Czarnecki, J Donahue, ... arXiv preprint arXiv:1711.09846, 2017 | 878 | 2017 |
Generating visual explanations LA Hendricks, Z Akata, M Rohrbach, J Donahue, B Schiele, T Darrell Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 747 | 2016 |
Large scale adversarial representation learning J Donahue, K Simonyan Advances in neural information processing systems 32, 2019 | 603 | 2019 |
LSDA: Large scale detection through adaptation J Hoffman, S Guadarrama, ES Tzeng, R Hu, J Donahue, R Girshick, ... Advances in neural information processing systems 27, 2014 | 385 | 2014 |
Efficient learning of domain-invariant image representations J Hoffman, E Rodner, J Donahue, T Darrell, K Saenko arXiv preprint arXiv:1301.3224, 2013 | 363 | 2013 |
High fidelity speech synthesis with adversarial networks M Bińkowski, J Donahue, S Dieleman, A Clark, E Elsen, N Casagrande, ... arXiv preprint arXiv:1909.11646, 2019 | 292 | 2019 |
Proceedings of the IEEE conference on computer vision and pattern recognition R Girshick, J Donahue, T Darrell, J Malik Rich feature hierarchies for accurate object detection and semantic …, 2014 | 250 | 2014 |
Data-dependent initializations of convolutional neural networks P Krähenbühl, C Doersch, J Donahue, T Darrell arXiv preprint arXiv:1511.06856, 2015 | 244 | 2015 |