Follow
Siamak Ravanbakhsh
Siamak Ravanbakhsh
Assistant Professor, McGill University
Verified email at cs.mcgill.ca - Homepage
Title
Cited by
Cited by
Year
Deep sets
M Zaheer, S Kottur, S Ravanbakhsh, B Poczos, RR Salakhutdinov, ...
Advances in neural information processing systems 30, 2017
28252017
Accurate, fully-automated NMR spectral profiling for metabolomics
S Ravanbakhsh, P Liu, R Mandal, JR Grant, M Wilson, R Eisner, ...
PLoS ONE 10 (5), e0124219, 2015
3192015
Equivariance Through Parameter-Sharing
S Ravanbakhsh, J Schneider, B Poczos
International Conference on Machine Learning (ICML) 70, 2892--2901, 2017
2592017
Learning to predict the cosmological structure formation
S He, Y Li, Y Feng, S Ho, S Ravanbakhsh, W Chen, B Póczos
Proceedings of the National Academy of Sciences 116 (28), 13825-13832, 2019
2442019
Cmu deeplens: deep learning for automatic image-based galaxy–galaxy strong lens finding
F Lanusse, Q Ma, N Li, TE Collett, CL Li, S Ravanbakhsh, R Mandelbaum, ...
Monthly Notices of the Royal Astronomical Society 473 (3), 3895-3906, 2018
2152018
Deep learning with sets and point clouds
S Ravanbakhsh, J Schneider, B Poczos
International Conference on Learning Representations (ICLR) - workshop track, 2016
2142016
Deep models of interactions across sets
J Hartford, DR Graham, K Leyton-Brown, S Ravanbakhsh
International Conference on Machine Learning 80, 1909-1918, 2018
1712018
Estimating cosmological parameters from the dark matter distribution
S Ravanbakhsh, J Oliva, S Fromenteau, L Price, S Ho, J Schneider, ...
International conference on machine learning, 2407-2416, 2016
922016
Enabling dark energy science with deep generative models of galaxy images
S Ravanbakhsh, F Lanusse, R Mandelbaum, J Schneider, B Poczos
AAAI Conference on Artificial Intelligence, 1488-1494, 2017
762017
Deep generative models for galaxy image simulations
F Lanusse, R Mandelbaum, S Ravanbakhsh, CL Li, P Freeman, B Póczos
Monthly Notices of the Royal Astronomical Society 504 (4), 5543-5555, 2021
602021
Boolean Matrix Factorization and Noisy Completion via Message Passing.
S Ravanbakhsh, R Barnabas Poczos, Greiner
International Conference on Machine Learning (ICML), 945-954, 2016
602016
Universal Equivariant Multilayer Perceptrons
S Ravanbakhsh
International Conference on Machine Learning (ICML), 2020
522020
Equivariance with learned canonicalization functions
SO Kaba, AK Mondal, Y Zhang, Y Bengio, S Ravanbakhsh
International Conference on Machine Learning, 15546-15566, 2023
462023
Improved knowledge graph embedding using background taxonomic information
B Fatemi, S Ravanbakhsh, D Poole
Proceedings of the AAAI conference on artificial intelligence 33 (01), 3526-3533, 2019
432019
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
C Morris, G Rattan, S Kiefer, S Ravanbakhsh
International Conference on Machine Learning, 2022
382022
Incidence networks for geometric deep learning
M Albooyeh, D Bertolini, S Ravanbakhsh
International Conference on Machine Learning, 2020
302020
Stochastic Neural Networks with Monotonic Activation Functions
S Ravanbakhsh, B Poczos, J Schneider, D Schuurmans, R Greiner
19th International Conference on Artificial Intelligence and Statistics 41 …, 2016
302016
Recovering the wedge modes lost to 21-cm foregrounds
S Gagnon-Hartman, Y Cui, A Liu, S Ravanbakhsh
Monthly Notices of the Royal Astronomical Society 504 (4), 4716-4729, 2021
282021
EqR: Equivariant representations for data-efficient reinforcement learning
AK Mondal, V Jain, K Siddiqi, S Ravanbakhsh
International Conference on Machine Learning, 15908-15926, 2022
252022
Equivariant Networks for Hierarchical Structures
R Wang, M Albooyeh, S Ravanbakhsh
Advances in Neural Information Processing Systems 33, 13806--13817, 2020
23*2020
The system can't perform the operation now. Try again later.
Articles 1–20