Follow
Giuseppe G. Calvi
Giuseppe G. Calvi
Verified email at imperial.ac.uk
Title
Cited by
Cited by
Year
Compression and interpretability of deep neural networks via tucker tensor layer: From first principles to tensor valued back-propagation
GG Calvi, A Moniri, M Mahfouz, Q Zhao, DP Mandic
arXiv preprint arXiv:1903.06133, 2019
45*2019
Support tensor machine for financial forecasting
GG Calvi, V Lucic, DP Mandic
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
222019
Tensor networks for latent variable analysis: Higher order canonical polyadic decomposition
AH Phan, A Cichocki, I Oseledets, GG Calvi, S Ahmadi-Asl, DP Mandic
IEEE transactions on neural networks and learning systems 31 (6), 2174-2188, 2019
212019
Tensor-train recurrent neural networks for interpretable multi-way financial forecasting
YL Xu, GG Calvi, DP Mandic
2021 International Joint Conference on Neural Networks (IJCNN), 1-5, 2021
152021
HOTTBOX: Higher order tensor ToolBOX
I Kisil, GG Calvi, BS Dees, DP Mandic
arXiv preprint arXiv:2111.15662, 2021
132021
Common and individual feature extraction using tensor decompositions: A remedy for the curse of dimensionality?
I Kisil, GG Calvi, A Cichocki, DP Mandic
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
122018
Tensor decompositions and practical applications: A hands-on tutorial
I Kisil, GG Calvi, B Scalzo Dees, DP Mandic
Recent Trends in Learning From Data: Tutorials from the INNS Big Data and …, 2020
112020
Accelerating tensor contraction products via tensor-train decomposition [tips & tricks]
I Kisil, GG Calvi, K Konstantinidis, YL Xu, DP Mandic
IEEE Signal Processing Magazine 39 (5), 63-70, 2022
62022
Tensor valued common and individual feature extraction: Multi-dimensional perspective
I Kisil, GG Calvi, DP Mandic
arXiv preprint arXiv:1711.00487, 2017
52017
Reducing computational complexity of tensor contractions via tensor-train networks
I Kisil, GG Calvi, K Konstantinidis, YL Xu, DP Mandic
arXiv preprint arXiv:2109.00626, 2021
42021
Feature fusion via tensor network summation
GG Calvi, I Kisil, DP Mandic
2018 26th European Signal Processing Conference (EUSIPCO), 2623-2627, 2018
42018
Tight lower bound on the tensor rank based on the maximally square unfolding
GG Calvi, BS Dees, DP Mandic
arXiv preprint arXiv:1909.05831, 2019
12019
Text Mining–A Key Lynchpin in the Investment Process: A Survey
A Konstantinidis, B Scalzo Dees, GG Calvi, DP Mandic
Applications of Intelligent Systems, 181-193, 2018
12018
Modelling economic stress through financial systemic balance index
AC García, T Chanwimalueang, GG Calvi, A Hemakom, RM Ricós, ...
2016 IEEE International Conference on Digital Signal Processing (DSP), 565-569, 2016
12016
A lower bound on the tensor rank based on its maximally square matrix unfolding
GG Calvi, BS Dees, DP Mandic
Signal Processing 180, 107862, 2021
2021
Higher order tensor decompositions for machine intelligence
GG Calvi
Imperial College London, 2021
2021
The sum of tensor networks
GG Calvi, I Kisil, DP Mandic
arXiv preprint arXiv:1711.00701, 2017
2017
The system can't perform the operation now. Try again later.
Articles 1–17