Follow
Adrią Recasens
Adrią Recasens
Research Scientist, DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
21462023
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
671*2024
Self-supervised multimodal versatile networks
JB Alayrac, A Recasens, R Schneider, R Arandjelović, J Ramapuram, ...
Advances in neural information processing systems 33, 25-37, 2020
4252020
Gaze360: Physically unconstrained gaze estimation in the wild
P Kellnhofer, A Recasens, S Stent, W Matusik, A Torralba
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
3982019
Where are they looking?
A Recasens Continente, A Khosla, C Vondrick, A Torralba
Neural Information Processing Systems Foundation, 2015
300*2015
Context based emotion recognition using emotic dataset
R Kosti, JM Alvarez, A Recasens, A Lapedriza
IEEE transactions on pattern analysis and machine intelligence 42 (11), 2755 …, 2019
2612019
Emotion recognition in context
R Kosti, JM Alvarez, A Recasens, A Lapedriza
Proceedings of the IEEE conference on computer vision and pattern …, 2017
2482017
Jointly discovering visual objects and spoken words from raw sensory input
D Harwath, A Recasens, D Surķs, G Chuang, A Torralba, J Glass
Proceedings of the European conference on computer vision (ECCV), 649-665, 2018
2452018
Where should saliency models look next?
Z Bylinskii, A Recasens, A Borji, A Oliva, A Torralba, F Durand
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
1842016
Learning to zoom: a saliency-based sampling layer for neural networks
A Recasens, P Kellnhofer, S Stent, W Matusik, A Torralba
Proceedings of the European conference on computer vision (ECCV), 51-66, 2018
1692018
Broaden your views for self-supervised video learning
A Recasens, P Luc, JB Alayrac, L Wang, F Strub, C Tallec, M Malinowski, ...
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
1412021
Tap-vid: A benchmark for tracking any point in a video
C Doersch, A Gupta, L Markeeva, A Recasens, L Smaira, Y Aytar, ...
Advances in Neural Information Processing Systems 35, 13610-13626, 2022
1212022
Game Plan: What AI can do for Football, and What Football can do for AI
K Tuyls, S Omidshafiei, P Muller, Z Wang, J Connor, D Hennes, I Graham, ...
Journal of Artificial Intelligence Research 71, 41-88, 2021
1102021
Following gaze in video
A Recasens, C Vondrick, A Khosla, A Torralba
Proceedings of the IEEE International Conference on Computer Vision, 1435-1443, 2017
1072017
Emotic: Emotions in context dataset
R Kosti, JM Alvarez, A Recasens, A Lapedriza
Proceedings of the IEEE conference on computer vision and pattern …, 2017
832017
Towards learning universal audio representations
L Wang, P Luc, Y Wu, A Recasens, L Smaira, A Brock, A Jaegle, ...
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
762022
Perception test: A diagnostic benchmark for multimodal video models
V Patraucean, L Smaira, A Gupta, A Recasens, L Markeeva, D Banarse, ...
Advances in Neural Information Processing Systems 36, 2024
532024
Multimodal self-supervised learning of general audio representations
L Wang, P Luc, A Recasens, JB Alayrac, A Oord
arXiv preprint arXiv:2104.12807, 2021
502021
Understanding infographics through textual and visual tag prediction
Z Bylinskii, S Alsheikh, S Madan, A Recasens, K Zhong, H Pfister, ...
arXiv preprint arXiv:1709.09215, 2017
412017
Synthetically trained icon proposals for parsing and summarizing infographics
S Madan, Z Bylinskii, M Tancik, A Recasens, K Zhong, S Alsheikh, ...
arXiv preprint arXiv:1807.10441, 2018
272018
The system can't perform the operation now. Try again later.
Articles 1–20