Unsupervised pixel-level domain adaptation with generative adversarial networks K Bousmalis, N Silberman, D Dohan, D Erhan, D Krishnan Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 1647 | 2017 |
Qanet: Combining local convolution with global self-attention for reading comprehension AW Yu, D Dohan, MT Luong, R Zhao, K Chen, M Norouzi, QV Le International Conference on Learning Representations, 2018 | 1098* | 2018 |
Palm: Scaling language modeling with pathways A Chowdhery, S Narang, J Devlin, M Bosma, G Mishra, A Roberts, ... arXiv preprint arXiv:2204.02311, 2022 | 929 | 2022 |
Rethinking attention with performers K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ... International Conference on Learning Representations, 2021 | 817 | 2021 |
Program synthesis with large language models J Austin, A Odena, M Nye, M Bosma, H Michalewski, D Dohan, E Jiang, ... arXiv preprint arXiv:2108.07732, 2021 | 222 | 2021 |
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ... arXiv preprint arXiv:2206.04615, 2022 | 180 | 2022 |
Show your work: Scratchpads for intermediate computation with language models M Nye, AJ Andreassen, G Gur-Ari, H Michalewski, J Austin, D Bieber, ... arXiv preprint arXiv:2112.00114, 2021 | 155 | 2021 |
Solving quantitative reasoning problems with language models A Lewkowycz, A Andreassen, D Dohan, E Dyer, H Michalewski, ... arXiv preprint arXiv:2206.14858, 2022 | 110 | 2022 |
Model-based reinforcement learning for biological sequence design C Angermueller, D Dohan, D Belanger, R Deshpande, K Murphy, ... | 82 | 2020 |
Masked language modeling for proteins via linearly scalable long-context transformers K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ... arXiv preprint arXiv:2006.03555, 2020 | 59 | 2020 |
Learning hierarchical semantic segmentations of LIDAR data D Dohan, B Matejek, T Funkhouser 2015 International Conference on 3D Vision, 273-281, 2015 | 42 | 2015 |
Population-based black-box optimization for biological sequence design C Angermueller, D Belanger, A Gane, Z Mariet, D Dohan, K Murphy, ... International Conference on Machine Learning, 324-334, 2020 | 39 | 2020 |
Is transfer learning necessary for protein landscape prediction? A Shanehsazzadeh, D Belanger, D Dohan NeurIPS workshop on Machine Learning in Structural Biology, 2020 | 26 | 2020 |
Amortized bayesian optimization over discrete spaces K Swersky, Y Rubanova, D Dohan, K Murphy Conference on Uncertainty in Artificial Intelligence, 769-778, 2020 | 26 | 2020 |
Language model cascades D Dohan, W Xu, A Lewkowycz, J Austin, D Bieber, RG Lopes, Y Wu, ... arXiv preprint arXiv:2207.10342, 2022 | 24 | 2022 |
Transforming source domain images into target domain images K Bousmalis, N Silberman, DM Dohan, D Erhan, D Krishnan US Patent 10,991,074, 2021 | 21 | 2021 |
K-median algorithms: theory in practice D Dohan, S Karp, B Matejek Working paper, Princeton, Computer Science, 2015 | 11 | 2015 |
Latent programmer: Discrete latent codes for program synthesis J Hong, D Dohan, R Singh, C Sutton, M Zaheer International Conference on Machine Learning, 4308-4318, 2021 | 10 | 2021 |
Computationally efficient neural network architecture search DM Dohan, DR So, C Liang, QV Le US Patent 10,997,503, 2021 | 10 | 2021 |
Towards learning universal hyperparameter optimizers with transformers Y Chen, X Song, C Lee, Z Wang, R Zhang, D Dohan, K Kawakami, ... Advances in Neural Information Processing Systems 35, 32053-32068, 2022 | 8 | 2022 |