Follow
Jean Paul Barddal
Jean Paul Barddal
Programa de Pós-Graduação em Informática (PPGIa), Pontifícia Universidade Católica do Paraná (PUCPR)
Verified email at ppgia.pucpr.br - Homepage
Title
Cited by
Cited by
Year
Adaptive random forests for evolving data stream classification
HM Gomes, A Bifet, J Read, JP Barddal, F Enembreck, B Pfharinger, ...
Machine Learning 106, 1469-1495, 2017
7812017
A survey on ensemble learning for data stream classification
HM Gomes, JP Barddal, F Enembreck, A Bifet
ACM Computing Surveys (CSUR) 50 (2), 1-36, 2017
6462017
Machine learning for streaming data: state of the art, challenges, and opportunities
HM Gomes, J Read, A Bifet, JP Barddal, J Gama
ACM SIGKDD Explorations Newsletter 21 (2), 6-22, 2019
300*2019
A survey on feature drift adaptation: Definition, benchmark, challenges and future directions
JP Barddal, HM Gomes, F Enembreck, B Pfahringer
Journal of Systems and Software 127, 278-294, 2017
1252017
A survey on concept drift in process mining
DMV Sato, SC De Freitas, JP Barddal, EE Scalabrin
ACM Computing Surveys (CSUR) 54 (9), 1-38, 2021
1052021
Adaptive random forests for data stream regression.
HM Gomes, JP Barddal, LEB Ferreira, A Bifet
ESANN, 2018
662018
Lessons learned from data stream classification applied to credit scoring
JP Barddal, L Loezer, F Enembreck, R Lanzuolo
Expert Systems With Applications 162, 113899, 2020
482020
On dynamic feature weighting for feature drifting data streams
JP Barddal, H Murilo Gomes, F Enembreck, B Pfahringer, A Bifet
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2016
422016
A systematic review on computer vision-based parking lot management applied on public datasets
PRL de Almeida, JH Alves, RS Parpinelli, JP Barddal
Expert Systems with Applications 198, 116731, 2022
412022
Improving credit risk prediction in online peer-to-peer (P2P) lending using imbalanced learning techniques
LEB Ferreira, JP Barddal, HM Gomes, F Enembreck
2017 IEEE 29th International Conference on Tools with Artificial …, 2017
402017
Merit-guided dynamic feature selection filter for data streams
JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer
Expert Systems with Applications 116, 227-242, 2019
392019
SNCStream: A social network-based data stream clustering algorithm
JP Barddal, HM Gomes, F Enembreck
Proceedings of the 30th annual ACM symposium on applied computing, 935-940, 2015
382015
Boosting decision stumps for dynamic feature selection on data streams
JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer
Information Systems 83, 13-29, 2019
372019
Cost-sensitive learning for imbalanced data streams
L Loezer, F Enembreck, JP Barddal, A de Souza Britto Jr
Proceedings of the 35th annual ACM symposium on applied computing, 498-504, 2020
332020
A survey on feature drift adaptation
JP Barddal, HM Gomes, F Enembreck
2015 IEEE 27th International Conference on Tools with Artificial …, 2015
332015
An explainable machine learning approach for student dropout prediction
JGC Krüger, A de Souza Britto Jr, JP Barddal
Expert Systems with Applications 233, 120933, 2023
302023
SFNClassifier: A scale-free social network method to handle concept drift
JP Barddal, HM Gomes, F Enembreck
Proceedings of the 29th Annual ACM Symposium on Applied Computing, 786-791, 2014
292014
A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start
AD Viniski, JP Barddal, A de Souza Britto Jr, F Enembreck, ...
Expert Systems with Applications 176, 114890, 2021
242021
SNCStream+: Extending a high quality true anytime data stream clustering algorithm
JP Barddal, HM Gomes, F Enembreck, JP Barthès
Information Systems 62, 60-73, 2016
232016
Analyzing the impact of feature drifts in streaming learning
JP Barddal, HM Gomes, F Enembreck
Neural Information Processing: 22nd International Conference, ICONIP 2015 …, 2015
232015
The system can't perform the operation now. Try again later.
Articles 1–20