Fast calibrated additive quantile regression M Fasiolo, SN Wood, M Zaffran, R Nedellec, Y Goude Journal of the American Statistical Association 116 (535), 1402-1412, 2021 | 244 | 2021 |
Scalable visualisation methods for modern Generalized Additive Models M Fasiolo, R Nedellec, Y Goude, SN Wood Journal of computational and Graphical Statistics, 2020 | 188 | 2020 |
A comparison of inferential methods for highly non-linear state space models in ecology and epidemiology M Fasiolo, N Pya, S Wood Statistical Science 31 (1), 96-118, 2016 | 83 | 2016 |
Practice makes perfect: The consequences of lexical proficiency for articulation F Tomaschek, BV Tucker, M Fasiolo, RH Baayen Linguistics Vanguard 4 (s2), 20170018, 2018 | 80 | 2018 |
A generalized Fellner‐Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models SN Wood, M Fasiolo Biometrics 73 (4), 1071-1081, 2017 | 71 | 2017 |
qgam: Bayesian non-parametric quantile regression modelling in R M Fasiolo, SN Wood, M Zaffran, R Nedellec, Y Goude arXiv preprint arXiv:2007.03303, 2020 | 64 | 2020 |
Rfast: a collection of efficient and extremely fast R functions M Papadakis, M Tsagris, M Dimitriadis, S Fafalios, I Tsamardinos, ... R package version 2 (1), 2020 | 55 | 2020 |
Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery D De Rosa, B Basso, M Fasiolo, J Friedl, B Fulkerson, PR Grace, ... Computers and Electronics in Agriculture 180, 105880, 2021 | 49 | 2021 |
Probabilistic forecasting of regional net-load with conditional extremes and gridded NWP J Browell, M Fasiolo IEEE Transactions on Smart Grid 12 (6), 5011-5019, 2021 | 42 | 2021 |
An extended empirical saddlepoint approximation for intractable likelihoods M Fasiolo, SN Wood, F Hartig, MV Bravington | 40 | 2018 |
Clinical predictors of pacemaker implantation in patients with syncope receiving implantable loop recorder with or without ECG conduction abnormalities N Ahmed, A Frontera, A Carpenter, S Cataldo, GM Connolly, M Fasiolo, ... Pacing and Clinical Electrophysiology 38 (8), 934-941, 2015 | 35 | 2015 |
Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade? D De Rosa, C Ballabio, E Lugato, M Fasiolo, A Jones, P Panagos Global Change Biology 30 (1), e16992, 2024 | 34 | 2024 |
Robust neural posterior estimation and statistical model criticism D Ward, P Cannon, M Beaumont, M Fasiolo, S Schmon Advances in Neural Information Processing Systems 35, 33845-33859, 2022 | 27 | 2022 |
Stochastic particle flow for nonlinear high-dimensional filtering problems FE De Melo, S Maskell, M Fasiolo, F Daum arXiv preprint arXiv:1511.01448, 2015 | 26 | 2015 |
COVID-19 and the difficulty of inferring epidemiological parameters from clinical data SN Wood, EC Wit, M Fasiolo, PJ Green The Lancet. Infectious Diseases 21 (1), 27, 2021 | 23 | 2021 |
An introduction to mvnfast M Fasiolo R package version 0.1 6, 2016 | 18 | 2016 |
Daily peak electrical load forecasting with a multi-resolution approach Y Amara-Ouali, M Fasiolo, Y Goude, H Yan International Journal of Forecasting 39 (3), 1272-1286, 2023 | 17 | 2023 |
An introduction to synlik (2014) M Fasiolo, S Wood R package version 0.1 1, 2014 | 15 | 2014 |
Rfast: A Collection of Efficient and Extremely Fast R Functions. 2021 M Papadakis, M Tsagris, M Dimitriadis, S Fafalios, I Tsamardinos, ... URL https://CRAN. R-project. org/package= Rfast. R package version 2 (3), 656, 0 | 15 | |
Drivers of interannual and intra‐annual variability of dissolved organic carbon concentration in the River Thames between 1884 and 2013 V Noacco, CJ Duffy, T Wagener, F Worrall, M Fasiolo, NJK Howden Hydrological Processes 33 (6), 994-1012, 2019 | 14 | 2019 |