Interactively picking real-world objects with unconstrained spoken language instructions J Hatori*, Y Kikuchi*, S Kobayashi*, K Takahashi*, Y Tsuboi*, Y Unno*, ... 2018 IEEE International Conference on Robotics and Automation (ICRA), 3774-3781, 2018 | 99 | 2018 |
Deep Visuo-Tactile Learning: Estimation of Tactile Properties from Images K Takahashi, J Tan 2019 IEEE/RSJ International Conference Robotics and Automation (ICRA2019), 2019 | 35* | 2019 |
Tool-body assimilation model considering grasping motion through deep learning K Takahashi, K Kim, T Ogata, S Sugano Robotics and Autonomous Systems 91, 115-127, 2017 | 33 | 2017 |
Dynamic Motion Learning for Multi-DOF Flexible-Joint Robots Using Active-Passive Motor Babbling through Deep Learning K Takahashi, T Ogata, J Nakanishi, G Cheng, S Sugano Advanced Robotics 31 (18), 1002-1015, 2017 | 19 | 2017 |
Neural network based model for visual-motor integration learning of robot's drawing behavior: Association of a drawing motion from a drawn image K Sasaki, H Tjandra, K Noda, K Takahashi, T Ogata 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015 | 19 | 2015 |
Tool-body assimilation model based on body babbling and neurodynamical system K Takahashi, T Ogata, H Tjandra, Y Yamaguchi, S Sugano Mathematical Problems in Engineering 2015, 2015 | 19 | 2015 |
Map-based multi-policy reinforcement learning: enhancing adaptability of robots by deep reinforcement learning A Kume, E Matsumoto, K Takahashi, W Ko, J Tan arXiv preprint arXiv:1710.06117, 2017 | 13 | 2017 |
Effective motion learning for a flexible-joint robot using motor babbling K Takahashi, T Ogata, H Yamada, H Tjandra, S Sugano 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015 | 10 | 2015 |
Deep Gated Multi-modal Learning: In-hand Object Pose Changes Estimation using Tactile and Image Data T Anzai*, K Takahashi* 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020 | 7* | 2020 |
Tool-body assimilation model based on body babbling and a neuro-dynamical system for motion generation K Takahashi, T Ogata, H Tjandra, S Murata, H Arie, S Sugano International Conference on Artificial Neural Networks, 363-370, 2014 | 4 | 2014 |
Tool-body assimilation model using a neuro-dynamical system for acquiring representation of tool function and motion K Takahshi, T Ogata, H Tjandra, Y Yamaguchi, Y Suga, S Sugano 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics …, 2014 | 4 | 2014 |
Uncertainty-Aware Self-Supervised Target-Mass Grasping of Granular Foods K Takahashi, W Ko, A Ummadisingu, S Maeda 2021 IEEE International Conference on International Conference on Robotics …, 2021 | 3 | 2021 |
Handling and grasp control with additional grasping point for dexterous manipulation of cylindrical tool T Sugaiwa, K Takahashi, H Kano, H Iwata, S Sugano 2011 IEEE International Conference on Robotics and Biomimetics, 733-738, 2011 | 3 | 2011 |
Conditional generative adversarial networks によるロボットアームの障害物回避軌道計画 鳥島亮太, 森裕紀, 高橋城志, 岡野原大輔, 尾形哲也 ロボティクス・メカトロニクス講演会講演概要集 2019, 1P2-A14, 2019 | 2 | 2019 |
Effective input order of dynamics learning tree CH Kim, S Hama, R Hirai, K Takahashi, H Yamada, T Ogata, S Sugano Advanced Robotics 32 (3), 122-136, 2018 | 2 | 2018 |
Efficient Motor Babbling Using Variance Predictions from a Recurrent Neural Network K Takahashi, K Suzuki, T Ogata, H Tjandra, S Sugano 22nd International Conference on Neural Information Processing (ICONIP2015 …, 2015 | 2 | 2015 |
Dynamic Motion Learning for a Flexible-Joint Robot using Active-Passive Motor Babbling K Takahashi, T Ogata, S Sugano, G Cheng The 33st Annual Conference of the Robotics Society of Japan, 2G1-07, 2015 | 2 | 2015 |
Target-mass Grasping of Entangled Food using Pre-grasping & Post-grasping K Takahashi, N Fukaya, A Ummadisingu IEEE Robotics and Automation Letters (RA-L) 7 (2), 1222-1229, 2022 | 1 | 2022 |
cGANs の潜在空間を用いた複数の障害物条件におけるロボットの衝突回避計画 安藤智貴, 森裕紀, 鳥島亮太, 高橋城志, 山口正一朗, 岡野原大輔, ... ロボティクス・メカトロニクス講演会講演概要集 2020, 1P1-G04, 2020 | 1 | 2020 |
触覚センサと深層学習を用いたマニピュレーション 高橋城志 日本ロボット学会誌 38 (6), 521-524, 2020 | 1 | 2020 |