Follow
Jeff Rasley
Jeff Rasley
Verified email at microsoft.com - Homepage
Title
Cited by
Cited by
Year
Zero: Memory optimizations toward training trillion parameter models
S Rajbhandari, J Rasley, O Ruwase, Y He
SC20: International Conference for High Performance Computing, Networking …, 2020
2342020
Planck: millisecond-scale monitoring and control for commodity networks
J Rasley, B Stephens, C Dixon, E Rozner, W Felter, K Agarwal, J Carter, ...
Proceedings of the 2014 ACM conference on SIGCOMM, 407-418, 2014
2112014
Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters
J Rasley, S Rajbhandari, O Ruwase, Y He
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020
1382020
Efficient queue management for cluster scheduling
J Rasley, K Karanasos, S Kandula, R Fonseca, M Vojnovic, S Rao
Proceedings of the Eleventh European Conference on Computer Systems, 1-15, 2016
1222016
Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning
S Rajbhandari, O Ruwase, J Rasley, S Smith, Y He
Proceedings of the International Conference for High Performance Computing …, 2021
642021
Retaining sandbox containment despite bugs in privileged memory-safe code
J Cappos, A Dadgar, J Rasley, J Samuel, I Beschastnikh, C Barsan, ...
Proceedings of the 17th ACM conference on Computer and communications …, 2010
642010
Hyperdrive: Exploring hyperparameters with pop scheduling
J Rasley, Y He, F Yan, O Ruwase, R Fonseca
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, 1-13, 2017
472017
Crowdsourcing from scratch: A pragmatic experiment in data collection by novice requesters
A Papoutsaki, H Guo, D Metaxa-Kakavouli, C Gramazio, J Rasley, W Xie, ...
Third AAAI Conference on Human Computation and Crowdsourcing, 2015
192015
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-scale Monitoring and Control for Commodity Networks
J Rasley, B Stephens, C Dixon, E Rozner
Proc. of SIGCOMM 10 (2619239.2626310), 0
11
Accelerating Large Scale Deep Learning Inference through {DeepCPU} at Microsoft
M Zhang, S Rajbandari, W Wang, E Zheng, O Ruwase, J Rasley, J Li, ...
2019 USENIX Conference on Operational Machine Learning (OpML 19), 5-7, 2019
72019
Deepspeed-moe: Advancing mixture-of-experts inference and training to power next-generation ai scale
S Rajbhandari, C Li, Z Yao, M Zhang, RY Aminabadi, AA Awan, J Rasley, ...
arXiv preprint arXiv:2201.05596, 2022
62022
Detecting latent cross-platform api violations
J Rasley, E Gessiou, T Ohmann, Y Brun, S Krishnamurthi, J Cappos
2015 IEEE 26th International Symposium on Software Reliability Engineering …, 2015
62015
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. Planck: millisecond-scale monitoring and control for commodity networks
J Rasley, B Stephens, C Dixon, E Rozner
Proceedings of the 2014 ACM conference on SIGCOMM, 407-418, 0
5
Low-latency network monitoring via oversubscribed port mirroring
J Rasley, B Stephens, C Dixon, E Rozner, W Felter, K Agarwal, J Carter, ...
Open Networking Summit 2014 (ONS 2014), 2014
22014
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
RY Aminabadi, S Rajbhandari, M Zhang, AA Awan, C Li, D Li, E Zheng, ...
arXiv preprint arXiv:2207.00032, 2022
2022
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
R Yazdani Aminabadi, S Rajbhandari, M Zhang, AA Awan, C Li, D Li, ...
arXiv e-prints, arXiv: 2207.00032, 2022
2022
Seattle: The Internet as a Testbed
J Rasley, M Muhammad, A Hanson, S Morgan, A Loh, J Cappos
2011
Journal: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, 2017
J Rasley, Y He, F Yan, O Ruwase, R Fonseca
The system can't perform the operation now. Try again later.
Articles 1–18