Follow
Cyprien de Masson d'Autume
Cyprien de Masson d'Autume
DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
289*2021
Competition-level code generation with alphacode
Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ...
Science 378 (6624), 1092-1097, 2022
193*2022
Learning and evaluating general linguistic intelligence
D Yogatama, CM d'Autume, J Connor, T Kocisky, M Chrzanowski, L Kong, ...
arXiv preprint arXiv:1901.11373, 2019
165*2019
Episodic memory in lifelong language learning
C de Masson D'Autume, S Ruder, L Kong, D Yogatama
Advances in Neural Information Processing Systems 32, 2019
1172019
A mutual information maximization perspective of language representation learning
L Kong, CM d'Autume, W Ling, L Yu, Z Dai, D Yogatama
arXiv preprint arXiv:1910.08350, 2019
111*2019
Psychlab: a psychology laboratory for deep reinforcement learning agents
JZ Leibo, CM d'Autume, D Zoran, D Amos, C Beattie, K Anderson, ...
arXiv preprint arXiv:1801.08116, 2018
72*2018
Training language gans from scratch
C de Masson d'Autume, S Mohamed, M Rosca, J Rae
Advances in Neural Information Processing Systems 32, 2019
592019
Adaptive semiparametric language models
D Yogatama, C de Masson d’Autume, L Kong
Transactions of the Association for Computational Linguistics 9, 362-373, 2021
552021
Mind the gap: Assessing temporal generalization in neural language models
A Lazaridou, A Kuncoro, E Gribovskaya, D Agrawal, A Liska, T Terzi, ...
Advances in Neural Information Processing Systems 34, 29348-29363, 2021
51*2021
Pitfalls of static language modelling
A Lazaridou, A Kuncoro, E Gribovskaya, D Agrawal, A Liska, T Terzi, ...
arXiv preprint arXiv:2102.01951, 2021
38*2021
Episodic memory in lifelong language learning
CM d'Autume, S Ruder, L Kong, D Yogatama
arXiv preprint arXiv:1906.01076, 2019
162019
Streamingqa: A benchmark for adaptation to new knowledge over time in question answering models
A Liska, T Kocisky, E Gribovskaya, T Terzi, E Sezener, D Agrawal, ...
International Conference on Machine Learning, 13604-13622, 2022
52022
Scaling Language Models: Methods, Analysis & Insights from Training Gopher. arXiv 2021
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 0
5
Sentence encoding with tree-constrained relation networks
L Yu, CM d'Autume, C Dyer, P Blunsom, L Kong, W Ling
arXiv preprint arXiv:1811.10475, 2018
32018
Do Language Models Learn Commonsense Knowledge?
XL Li, A Kuncoro, CM d'Autume, P Blunsom, A Nematzadeh
arXiv preprint arXiv:2111.00607, 2021
22021
A systematic investigation of commonsense understanding in large language models
XL Li, CMA Adhiguna Kuncoro, P Blunsom, A Nematzadeh
CoRR, abs/2111.00607, 2021
22021
A Systematic Investigation of Commonsense Knowledge in Large Language Models
XL Li, A Kuncoro, J Hoffmann, C de Masson d’Autume, P Blunsom, ...
Proceedings of the 2022 Conference on Empirical Methods in Natural Language …, 2022
12022
The system can't perform the operation now. Try again later.
Articles 1–17