Follow
Shengquan Chen
Title
Cited by
Cited by
Year
Predicting enhancers with deep convolutional neural networks
X Min, W Zeng, S Chen, N Chen, T Chen, R Jiang
BMC bioinformatics 18, 35-46, 2017
992017
Simultaneous deep generative modelling and clustering of single-cell genomic data
Q Liu, S Chen, R Jiang, WH Wong
Nature machine intelligence 3 (6), 536-544, 2021
792021
stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics
S Chen, B Zhang, X Chen, X Zhang, R Jiang
Bioinformatics 37 (Supplement_1), i299-i307, 2021
652021
RA3 is a reference-guided approach for epigenetic characterization of single cells
S Chen, G Yan, W Zhang, J Li, R Jiang, Z Lin
Nature communications 12 (1), 2177, 2021
542021
Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding
X Chen, S Chen, S Song, Z Gao, L Hou, X Zhang, H Lv, R Jiang
Nature Machine Intelligence 4 (2), 116-126, 2022
512022
SilencerDB: a comprehensive database of silencers
W Zeng, S Chen, X Cui, X Chen, Z Gao, R Jiang
Nucleic acids research 49 (D1), D221-D228, 2021
422021
OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions
S Chen, Q Liu, X Cui, Z Feng, C Li, X Wang, X Zhang, Y Wang, R Jiang
Nucleic Acids Research 49 (W1), W483–W490, 2021
23*2021
DeepCAPE: a deep convolutional neural network for the accurate prediction of enhancers
S Chen, M Gan, H Lv, R Jiang
Genomics, Proteomics and Bioinformatics 19 (4), 565-577, 2021
212021
SINFONIA: scalable identification of spatially variable genes for deciphering spatial domains
R Jiang, Z Li, Y Jia, S Li, S Chen
Cells 12 (4), 604, 2023
152023
Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics
Z Li, X Chen, X Zhang, R Jiang, S Chen
Genome Research 33 (10), 1757-1773, 2023
122023
scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data
Z Gao, X Chen, Z Li, X Cui, S Chen, R Jiang
bioRxiv, 2023.04. 27.538652, 2023
112023
ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data
S Chen, R Wang, W Long, R Jiang
Bioinformatics 39 (1), btac842, 2023
102023
VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
S Chen, K Hua, H Cui, R Jiang
BMC bioinformatics 20, 139-151, 2019
92019
EnClaSC: a novel ensemble approach for accurate and robust cell-type classification of single-cell transcriptomes
X Chen, S Chen, R Jiang
BMC bioinformatics 21, 1-16, 2020
62020
Lockpicking LLMs: A Logit-Based Jailbreak Using Token-level Manipulation
Y Li, Y Liu, Y Li, L Shi, G Deng, S Chen, K Wang
arXiv preprint arXiv:2405.13068, 2024
32024
scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders
Y Cao, X Zhao, S Tang, Q Jiang, S Li, S Li, S Chen
Nature Communications 15 (1), 2973, 2024
32024
scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data
S Tang, X Cui, R Wang, S Li, S Li, X Huang, S Chen
Nature Communications 15 (1), 1629, 2024
22024
scIBD: a self-supervised iterative-optimizing model for boosting the detection of heterotypic doublets in single-cell chromatin accessibility data
W Zhang, R Jiang, S Chen, Y Wang
Genome Biology 24 (1), 225, 2023
22023
RefTM: reference-guided topic modeling of single-cell chromatin accessibility data
Z Zhang, S Chen, Z Lin
Briefings in Bioinformatics 24 (1), bbac540, 2023
22023
EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information
S Song, H Cui, S Chen, Q Liu, R Jiang
Quantitative Biology 7 (3), 233-243, 2019
22019
The system can't perform the operation now. Try again later.
Articles 1–20