Follow
Jonas Malmsten
Jonas Malmsten
Weill Cornell Medicine
Verified email at malmsten.net
Title
Cited by
Cited by
Year
Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization
P Khosravi, E Kazemi, Q Zhan, JE Malmsten, M Toschi, P Zisimopoulos, ...
NPJ digital medicine 2 (1), 21, 2019
2292019
Blastocyst score, a blastocyst quality ranking tool, is a predictor of blastocyst ploidy and implantation potential
Q Zhan, ET Sierra, J Malmsten, Z Ye, Z Rosenwaks, N Zaninovic
F&S Reports 1 (2), 133-141, 2020
292020
Predictive modeling in reproductive medicine: where will the future of artificial intelligence research take us?
CL Curchoe, J Malmsten, C Bormann, H Shafiee, AFS Farias, ...
Fertility and sterility 114 (5), 934-940, 2020
272020
Comparing TensorFlow deep learning performance using CPUs, GPUs, local PCs and cloud
J Lawrence, J Malmsten, A Rybka, DA Sabol, K Triplin
272017
Robust automated assessment of human blastocyst quality using deep learning
P Khosravi, E Kazemi, Q Zhan, M Toschi, JE Malmsten, C Hickman, ...
BioRxiv, 394882, 2018
192018
Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos
K Loewke, JH Cho, CD Brumar, P Maeder-York, O Barash, JE Malmsten, ...
Fertility and Sterility 117 (3), 528-535, 2022
142022
Automated cell division classification in early mouse and human embryos using convolutional neural networks
J Malmsten, N Zaninovic, Q Zhan, Z Rosenwaks, J Shan
Neural Computing and Applications 33, 2217-2228, 2021
122021
Application of artificial intelligence technology to increase the efficacy of embryo selection and prediction of live birth using human blastocysts cultured in a time-lapse …
N Zaninovic, CJ Rocha, Q Zhan, M Toschi, J Malmsten, M Nogueira, ...
Fertility and Sterility 110 (4), e372-e373, 2018
112018
Assessing human blastocyst quality using artificial intelligence (AI) convolutional neural network (CNN)
N Zaninovic, P Khosravi, I Hajirasouliha, JE Malmsten, E Kazemi, Q Zhan, ...
Fertility and Sterility 110 (4), e89, 2018
102018
Automatic prediction of embryo cell stages using artificial intelligence convolutional neural network
J Malmsten, N Zaninovic, Q Zhan, M Toschi, Z Rosenwaks, J Shan
Fertility and Sterility 110 (4), e360, 2018
82018
Automated cell stage predictions in early mouse and human embryos using convolutional neural networks
J Malmsten, N Zaninovic, Q Zhan, Z Rosenwaks, J Shan
2019 IEEE EMBS international conference on biomedical & health informatics …, 2019
72019
Noninvasive detection of blastocyst ploidy (euploid vs. aneuploid) using artificial intelligence (AI) with deep learning methods
J Barnes, J Malmsten, Q Zhan, I Hajirasouliha, O Elemento, J Sierra, ...
Fertility and Sterility 114 (3), e76, 2020
62020
Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. npj Digital Medicine, 2 (1): 21, 12 2019
P Khosravi, E Kazemi, Q Zhan, JE Malmsten, M Toschi, P Zisimopoulos, ...
ISSN, 2019
52019
Artificial intelligence assessment of time-lapse images can predict with 77% accuracy whether a human embryo capable of achieving a pregnancy will miscarry
R Hariharan, P He, M Meseguer, M Toschi, JC Rocha, N Zaninovic, ...
Fertility and Sterility 112 (3), e38-e39, 2019
42019
A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
J Barnes, M Brendel, VR Gao, S Rajendran, J Kim, Q Li, JE Malmsten, ...
The Lancet Digital Health 5 (1), e28-e40, 2023
12023
Pregnancy outcomes after oral and injectable ovulation induction in women with infertility with a low antimüllerian hormone level compared with those with a normal …
PA Romanski, P Bortoletto, JE Malmsten, KS Tan, SD Spandorfer
Fertility and Sterility 118 (6), 1048-1056, 2022
12022
P-588 Evaluation of anti-Müllerian hormone levels as a predictor of pregnancy outcome following intrauterine insemination in infertile women
P Romanski, P Bortoletto, J Malmsten, S Spandorfer
Human Reproduction 37 (Supplement_1), deac107. 542, 2022
12022
O-120 Embryo ranking agreement between embryologists and AI algorithms
N Zaninovic, J Sierra, J Malmsten, Z Rosenwaks
Human Reproduction 37 (Supplement_1), deac105. 020, 2022
12022
Machine learning for automated cell segmentation in embryos
P He, R Hariharan, J Chambost, C Jacques, R Azambuja, M Badalotti, ...
HUMAN REPRODUCTION 36, 211-211, 2021
12021
Perinatal outcome using time-lapse system and reduced oxygen culture in IVF patients
N Zaninovic, Q Zhan, R Clarke, Z Ye, J Malmsten, Z Rosenwaks
Fertility and Sterility 104 (3), e227-e228, 2015
12015
The system can't perform the operation now. Try again later.
Articles 1–20